

YEAR 12 ATAR HUMAN BIOLOGICAL SCIENCE SEMESTER TWO EXAM

MULTIPLE CHOICE ANSWER SHEET

2018

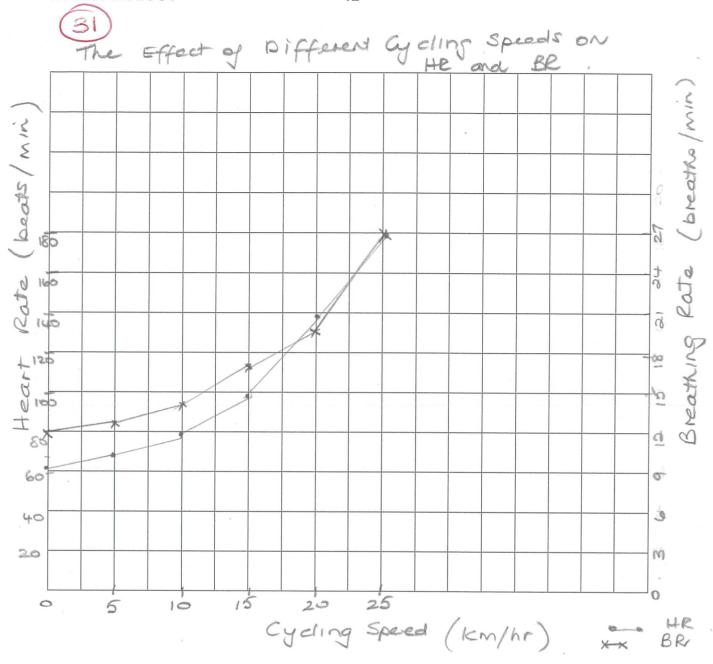
N	lame:	ANS	WE	res				
Т	eacher's Name:							
IN	STRUCTIONS							
Fo	or each question shade to se only a blue or black t	the box to	indicat ade the	e your boxes.	answei			
Fo	r example, if b is your a	nswer:						
If y	ou make a mistake, pla d shade your new answ	ce a cross	s throug	h that	square	, do not eras	se or	use correction fluid
	r example, if b is a mista		l is your	answe	r:	- N] 📠
Ma	rks will not be deducted marks will be given if r	d for incor	rect an	swers.	compl			
					COMP	eled for any	ques	tion.
Qu	estion 1 -30							
1	□a □b ⊖c □d		11	a 🗆 b	Oc I	□d	21	□a @ b □c □d
2	□a □b Bc □d		12 🔲	a 📵 b	□c	3d	22	□a @ b □c □d
3	□ a a b □ c □ d		13	a 🗆 b	B c (⊒d	23	□a □b □c 圓d
4	□a □b □c @d						24	■a □b □c □d
5	□a mab □c □d		15	a 0 b]d	25	□a □b a c □d
6	Øa □b □c □d	1	16 🗆	9 0 b		3 d	26	□a □b 8 c □d
7		1	17 🗆	1 0 b		Jd	27	② a □b □c □d
8	□a □b □c ■d	1	18 🔲	a a b		od	28	a □ b □ c □ d
9	□a □ b □c □d	1	19 🗖	1 1 1 1		J d	29	□a □b @ c □d
10		2	20	d 🗆 b]d	30	□a □b □c a d

Section Two: Short answer

50% (100 Marks)

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Additional working space pages at the end of the Question/Answer booklet are for planning or continuing an answer. If you use these pages, indicate at the original answer, the page number it is planned/continued on and write the question number being planned/continued on the additional working space page.


Suggested working time: 90 minutes.

Question 31 (13 marks)

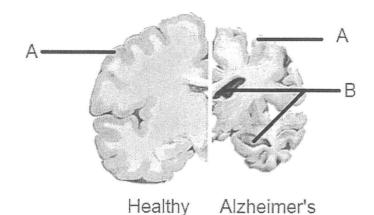
An investigation was carried out into the effects of exercise on the heart rate and breathing rate of a student. His heart rate, breathing rate and blood pH were first measured at rest. Data were collected after he had cycled for 2 minutes at 5km/hr on an exercise bike. After resting for 5 minutes, the procedure was repeated at cycling speeds of 10, 15, 20 and 25km/hr. The results are shown below in the table below.

Cycling Speed (km/hr)	Heart Rate (beats/min)	Breathing Rate (breaths/min)
		(b) eaths/illill
0	64	12
5	70	13
10	80	14
15	100	17
20	140	20
25	180	27

(a) Graph these results on the grid provided. (If needed there is a second grid on page 34 of this booklet. If you use the second grid, make sure you clearly write cancelled on the grid below) (5 marks)

(b)	Describe the re	lationship bet	ween cycling	g speed	and hea	rt rate.	-A	(1 mark)
	As	cycling	Spead	7	HR	a/50	7	
		0 1		2				

(c) Explain why the breathing rate increased as the cycling rate is increased.


(3 marks)

-	4	cycling	rate	will	7	CO2	production
- 6	7	coa	→	9 BR			1
	4	read	for	02			
			1				

(u)	burning the investigation, the student was given a 5 initiate rest between	each Z
	minute cycling session. Suggest why this was done. To allow both HRT BR to	(1 marks)
	return to normal resting.	
		×
(e)	The student in this investigation had blood samples taken before any cycland at the end of the investigation. The pH was measured for both samp was found that the pH had dropped from 7.4 to 7.2 during the investigation.	les and it
	Explain why this change would have occurred. A activity> f co2 produ	(3 marks)
	· A cos - A H+ 1000 IN	6 000
	o AHT and bAH.	
		The state and analysis are also provided the state of the

Question 32 (11 marks)

Parts (a), (b) and (d) of the following question refer to the diagram of a healthy brain compared to a brain suffering from Alzheimer's disease shown below.

(a) State the name of the matter found at the locations labelled A. (1 mark)

	Description		Mark
Grey matter			1
	,	Total	1

(b) State **one** change that can be seen between the healthy and Alzheimer's affected brain. (1 mark)

	Description	Mark
Any o	ne of the following for one mark:	
•	Cerebral Cortex / Cerebrum, shrivels up/reduces in size	1
•	Hippocampus reduces in size/shrivels up	
•	Ventricles/fluid-filled areas of the brain increase in size/grow	
	larger	
14	Decreased brain & Total	1
	1 CC 1 1 te And	

(c) Repetitive questions and conversations are a common sign of Alzheimer' Disease. Suggest how damage to the outer areas of the brain would cause this occur.

(3 marks)

Description	Mark
Damage to the association areas/temporal lobe/frontal lobe	1
Severs the links/connections between nerve pathways	1
(which are) associated with memory	1
Total	3

(d) Alzheimer's disease is also associated with dysfunctional autonomic nervous systems. Compare and contrast the somatic and autonomic nervous systems.

(3 marks)

Descr	ription	Mark
One similarity for 1 mark from the	following:	
Acetylcholine used		1
 Excitatory capabilities 		
 Receive input from sensory 	/ neurons	
Two differences for 1 mark each fr	om the following rows:	
Somatic	Autonomic	
Effector: skeletal muscle	Effector: smooth and cardiac	
	muscle and glands	
Voluntary	Involuntary	1-2
One motor neuron	Two motor neurons	
No use of epinephrine	Use of epinephrine	
No inhibitory capability	Inhibitory capability	
	Total	3

(e) There is currently no cure for Alzheimer's disease; however, cell replacement therapy has the potential to treat such nervous system disorders. Explain the process of cell replacement therapy in the context of Alzheimer's disease. (3 marks)

Description		Mark
Stem cells are isolated		1
(stem) cells are cultured/grown ex-vivo		1
Cells are reintroduced into damaged areas of the brain		1
	Γotal	3

Question 33 (13 marks)

An increasing number of young patients have been diagnosed with severe intestinal infections. Scientists believe that the microorganism responsible has a high rate of mutation and has shown resistance to common antibiotic treatments.

(a) State the most likely microorganism associated with the intestinal infection.

(1 mark)

Description	Mark
Bacteria .	1
Total	1

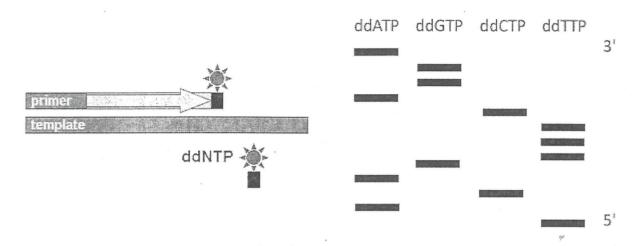
(b) State and briefly describe the process by which this microorganism gains antibiotic resistance. (4 marks)

Description	Maťk
Natural Selection	1
Some bacteria show (antibiotic) resistance	1
Antibiotics kill 'normal' bacteria / do not kill resistance bacteria	1
Resistant bacteria multiply/grow	1
Total	4

(a) Since it is difficult to cure the intestinal infection caused by this organism, explain how the spread of this infection can be prevented by using the body's immune system synthetically.

(3 marks)

	Description	Mark
Vaccine/Vaccination		1
Any tv	vo of the following for 1 mark each:	
0	Use of weakened/attenuated pathogen and/or dead pathogen	
•	Ability to manufacture antibodies / creates memory cells	1-2
0	Artificial active immunity	
	Total	3


(b) Pathologists were able to observe the cells of the patients and saw them to be infected with the microorganism. Draw a flowchart, or annotated diagram, to demonstrate the appropriate response of the immune system.

(5 marks)

Description	Mark
Flowchart/annotated diagram must include any five of the following	
for 1 mark each:	
T-cells in lymphoid tissue	
 T-cell is presented with antigen from B-cell / macrophage 	
T-cell is sensitised/activated	
T-cell enlarges	1-5
 T-cell divides / Clones of T-cells are produced 	
 T-cells become Killer T-cells, Helper T-cells, memory cells 	
Example:	
T-Cells, Helper T-Cells,	Some become nemory cells
Total	5

Question 34 (11 marks)

The following question refers to the diagrams below that show Sanger's method of DNA Sequencing when undertaking comparative genomics.

(a) Explain the importance of the dideoxynucleotide (ddNTP) in this technique.

(3 marks)

Description	Mark
Stops/terminates chain elongation / chain-elongation inhibitors /	1
don't allow other nucleotides to be added	
Lack OH/hydroxyl group	1
Allow the strands to be compared	1
Total	3

(b) State the sequence of bases of DNA in a 5' to 3' direction.

(1 mark)

Description	Mark
TAC AGT TTC AGG A	1
Total	- Manager

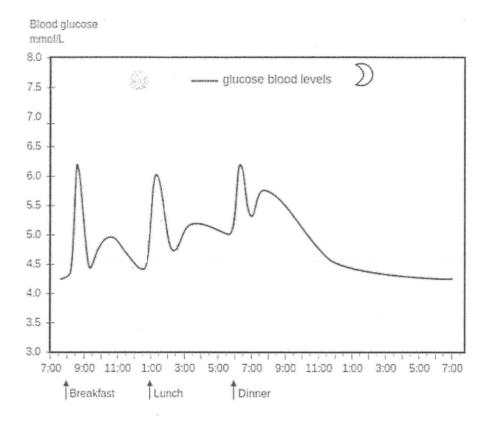
(c) DNA Sequencing, and other associated techniques, have allowed for comparative studies of DNA. Explain how comparing nuclear DNA sequences can provide evidence for evolution. (3 marks)

Description	Mark
Species have different DNA sequences/codes	1
Use of hybridisation/ERVs/non-functional (junk) DNA	1
The more similarities in DNA, the closer the relation / the greater the	1
differences, the more distant relation	
Total	3

(d) Suggest **two** reasons why mitochondrial DNA (mtDNA) is best used when comparing individuals within a species. (2 marks)

	Description	Mark
Any tv	vo of the following:	
0	mtDNA is inherited from the mother	
	Lack of recombination	1-2
•	Higher mutation rate	
•	Higher copy number — 6	
	Total	2

Comparative evidence has shown approximately 20% of *Homo sapiens* DNA is shared with *Homo neanderthalensis*. Both physical characteristics and cultural behaviours of these two hominins have evolved, allowing the species to become more suited to the environment.


(e) Describe the effect of Natural Selection on the development of tools in Hominin culture.

(2 marks)

Description		Mark
There is no effect		1
Culture is not inherited / culture is passed on through learning		1
	Total	2

Question 35 (14 marks)

The following question refers to the graph below of a Year 12 student's glucose levels during the course of a day.

(a) Explain why you would expect the insulin levels to increase when blood glucose levels do, and give **two** reasons for the fall in blood glucose after eating a meal.

(5 marks)

	Description	Mark
Any th	Any three of the following for 1 mark each:	
	Increased levels of glucose stimulate insulin release	
	Chemoreceptors in the Islets of Langerhans	1-3
9	Islets of Langerhans are located in Pancreas	
•	Beta cells produce insulin	
	Causes a decrease in blood glucose	
Any tv	vo of the following for 1 mark each:	
9	Increases glucose uptake into body/liver cells	
	Conversion to fatty acids/promotes fat storage	1-2
•	Promotes glycogenesis/conversion of glucose to glycogen	
•	Used for respiration/glycolysis/metabolic activity	